实现可视化的三个步骤:

1、首先,要知道我们用哪些库来画图?

中最基本的作图库就是,是一个最基础的可视化库,一般都是从上手数据可视化,然后开始做纵向与横向拓展。

是一个基于的高级可视化效果库,针对的点主要是数据挖掘和机器学习中的变量特征选取,可以用短小的代码去绘制描述更多维度数据的可视化效果图

其他库还包括

Bokeh(是一个用于做浏览器端交互可视化的库,实现分析师与数据的交互);(处理地理数据引擎更强的可视化工具库)等等

本篇文章主要使用进行案例分析

第一步:确定问题,选择图形

业务可能很复杂,但是经过拆分,我们要找到我们想通过图形表达什么具体问题。分析思维的训练可以学习《麦肯锡方法》和《金字塔原理》中的方法。

这是网上的一张关于图表类型选择的总结。

plt.xlim_plt.xlim_plt.xlim

在中,我们可以总结为以下四种基本视觉元素来展现图形:

数据间存在分布,构成,比较,联系以及变化趋势等关系。对应不一样的关系,选择相应的图形进行展示。

第二步:转换数据,应用函数

数据分析和建模方面的大量编程工作都是用在数据准备的基础上的:加载、清理、转换以及重塑。我们可视化步骤也需要对数据进行整理,转换成我们需要的格式再套用可视化方法完成作图。

下面是一些常用的数据转换方法:

将分类变量转换‘哑变量矩阵’的函数以及在df中对某列数据取限定值等等。

函数则根据第一步中选择好的图形,去找中对应的函数。

第三步:参数设置,一目了然

原始图形画完后,我们可以根据需求修改颜色(color),线型(),标记(maker)或者其他图表装饰项标题(Title),轴标签(,),轴刻度(),还有图例()等,让图形更加直观。

第三步是在第二步的基础上,为了使图形更加清晰明了plt.xlim,做的修饰工作。具体参数都可以在制图函数中找到。

2、可视化作图基础

作图基础

#导入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

的图形都位于(画布)中,创建图像空间。不能通过绘图plt.xlim,必须用创建一个或多个。

可以指定图像尺寸。

#创建画布
fig = plt.figure()

#创建subplot,221表示这是2行2列表格中的第1个图像。
ax1 = fig.add_subplot(221)
#但现在更习惯使用以下方法创建画布和图像,2,2表示这是一个2*2的画布,可以放置4个图像
fig , axes = plt.subplots(2,2,sharex=True,sharey=True)
#plt.subplot的sharex和sharey参数可以指定所有的subplot使用相同的x,y轴刻度。

plt.xlim_plt.xlim_plt.xlim

利用的方法可以调整间距。

subplots_adjust(left=None,bottom=None,right=None,top=None,wspace=None,hspace=None)

plt.xlim_plt.xlim_plt.xlim

颜色color,标记,和线型

的plot函数接受一组X和Y坐标,还可以接受一个表示颜色和线型的字符串缩写:'g--',表示颜色是绿色green,线型是'--'虚线。也可以使用参数明确的指定。

线型图还可以加上一些标记(),来突出显示数据点的位置。标记也可以放在格式字符串中,但标记类型和线型必须放在颜色后面。

plt.plot(np.random.randn(30),color='g',linestyle='--',marker='o')
[]


plt.xlim_plt.xlim_plt.xlim

刻度,标签和图例

plt的xlim、和方法分别控制图表的范围和刻度位置和刻度标签。

调用方法时不带参数,则返回当前的参数值;调用时带参数,则设置参数值。

plt.plot(np.random.randn(30),color='g',linestyle='--',marker='o')
plt.xlim() #不带参数调用,显示当前参数;
#可将xlim替换为另外两个方法试试
(-1.4500000000000002, 30.45)


plt.xlim_plt.xlim_plt.xlim

plt.plot(np.random.randn(30),color='g',linestyle='--',marker='o')
plt.xlim([0,15]) #横轴刻度变成0-15
(0, 15)

plt.xlim_plt.xlim_plt.xlim

设置标题,轴标签,刻度以及刻度标签

fig = plt.figure();ax = fig.add_subplot(1,1,1)
ax.plot(np.random.randn(1000).cumsum())
ticks = ax.set_xticks([0,250,500,750,1000]) #设置刻度值
labels = ax.set_xticklabels(['one','two','three','four','five']) #设置刻度标签
ax.set_title('My first Plot'#设置标题
ax.set_xlabel('Stage'#设置轴标签
Text(0.5,0,'Stage')


plt.xlim_plt.xlim_plt.xlim

添加图例

图例是另一种用于标识图标元素的重要工具。可以在添加的时候传入label参数。

fig = plt.figure(figsize=(12,5));ax = fig.add_subplot(111)
ax.plot(np.random.randn(1000).cumsum(),'k',label='one'#传入label参数,定义label名称
ax.plot(np.random.randn(1000).cumsum(),'k--',label='two')
ax.plot(np.random.randn(1000).cumsum(),'k.',label='three')
#图形创建完后,只需要调用legend参数将label调出来即可。
ax.legend(loc='best'#要求不是很严格的话,建议使用loc=‘best’参数来让它自己选择最佳位置

plt.xlim_plt.xlim_plt.xlim

注解

除标准的图表对象之外,我们还可以自定义添加一些文字注解或者箭头。

注解可以通过text,arrow和等函数进行添加。text函数可以将文本绘制在指定的x,y坐标位置,还可以进行自定义格式

plt.plot(np.random.randn(1000).cumsum())
plt.text(600,10,'test ',family='monospace',fontsize=10)
#中文注释在默认环境下并不能正常显示,需要修改配置文件,使其支持中文字体。具体步骤请自行搜索。

保存图表到文件

利用plt.可以将当前图表保存到文件。例如,要将图表保存为png文件,可以执行

文件类型是根据拓展名而定的。其他参数还有:

plt.savefig('./plot.jpg'#保存图像为plot名称的jpg格式图像


3、中的绘图函数

作图

是最基础的绘图函数,也是相对较低级的工具。组装一张图表需要单独调用各个基础组件才行。中有许多基于的高级绘图方法,原本需要多行代码才能搞定的图表,使用只需要短短几行。

我们使用的就调用了中的绘图包。

import matplotlib.pyplot as plt

线型图

和都有一个用于生成各类图表的plot方法。默认情况下,他们生成的是线型图。

s = pd.Series(np.random.randn(10).cumsum(),index=np.arange(0,100,10))
s.plot() #Series对象的索引index会传给matplotlib用作绘制x轴。

plt.xlim_plt.xlim_plt.xlim

df = pd.DataFrame(np.random.randn(10,4).cumsum(0),columns=['A','B','C','D'])
df.plot() #plot会自动为不同变量改变颜色,并添加图例


plt.xlim_plt.xlim_plt.xlim

.plot方法的参数

.plot方法的参数

除了中的参数外,还有一些独有的选项。

柱状图

在生成线型图的代码中加上kind=‘bar’或者kind=‘barh’,可以生成柱状图或水平柱状图。

fig,axes = plt.subplots(2,1)
data = pd.Series(np.random.rand(10),index=list('abcdefghij'))
data.plot(kind='bar',ax=axes[0],rot=0,alpha=0.3)
data.plot(kind='barh',ax=axes[1],grid=True)


plt.xlim_plt.xlim_plt.xlim

柱状图有一个非常实用的方法:

利用图形化显示或者DF中各值的出现频率。

比如df.().plot(kind='bar')

可视化的基础语法就到这里,其他图形的绘制方法大同小异。

重点是遵循三个步骤的思路来进行思考、选择、应用。多多练习可以更加熟练。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注