如果你有兴趣看这个相信你已经对背包问题有所了解,所以关于背包问题的描述,我就不写了。

只记录一下自己对这个问题的一些看法和思考,于我而言,这个东西现在困扰我的是如何确定最优解。

实质上关于背包问题网上的东西我大体都有看过,对于这个问题多重背包问题,常见的就是使背包重量动态增长,然后遍历每个要装入的这些包裹,当包裹的重量小于等于当前背包的重量时,就可以装进背包了,那应不应该把当前这个包裹装入呢多重背包问题,这取决于 装入这个包裹,和未装入这个包裹的时候哪个状态的背包的价值最大,所以,背包问题的关键是‘01’,要么装,要么不装。

然后问题来了,未装入这个包裹的时候,这个时候的背包的最大的价值在哪里呢?

首先,在背包重量逐渐增大至与最小包裹相等的时候,这个时候就出现了第一个最优解(背包里物品最大值),因为在他前边这个背包里是没有任何东西的,我们需要把它保存下来,怎么保存呢?以当前背包的重量为行标,当前包裹的序列为列标将其存到一个二维数组里,这样做了之后,在决定要不要将当前包裹扔进背包的时候,可以比较一下装进这个包裹和不装这个包裹时候背包的最优解,保存结果的那个二维数组行标减去当前包裹的重量,and列标减一 就是 当前包裹的前几个包裹扔进这个背包能获得的最优解,而有一个数学关系是始终成立的,就是: 当前背包的重量 - 当前包裹的重量 这个差值 确定的行标,如果该行存在,那么这个行数是 >= 0 的, 所以 当前背包的重量 >= 当前包裹的重量,这也就确定了我们现在的背包是可以装的下我们正在遍历的包裹的。

写一段试试吧:

/**
     *
     * @param {Array} items 包裹尺寸集
     * @param {Array} values包裹价值集
     * @param {number} bagSize 背包尺寸
     * @return {Array} 返回遍历后的数组,最优解在该数组的最后一个元素上
     */
function mostPrecious( items,values,bagSize ){
    let result = [];
    for( let size = 0 ; size <= bagSize; size++){
        result[size] = [];
        for( let item = 0; item < items.length; item++ ){
            if( size == 0 ){//背包尺寸为0装不下任何东西
                result[size][item] = 0;
                continue;
            }
             if( size - items[item] = 0 )
            {
              result[size][item] = Math.max( (result[ size - items[item] ][item-1]|| 0) + values[item],result[size][item-1] || 0 )
            }
        }
    }
    return result;
}

今天先写到这儿 bug 不断啊。。。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注